module adabmDCA.io
function load_chains
load_chains(
fname: str,
tokens: str,
load_weights: bool = False,
device: device = device(type='cpu'),
dtype: dtype = torch.float32
) → Tuple[Tensor, ]
Loads the sequences from a fasta file and returns the one-hot encoded version. If the sequences are weighted, the log-weights are also returned. If the sequences are not weighted, the log-weights are set to 0.
Args:
fname(str): Path to the file containing the sequences.tokens(str): "protein", "dna", "rna" or another string with the alphabet to be used.load_weights(bool, optional): If True, the log-weights are loaded and returned. Defaults to False.device(torch.device, optional): Device where to store the sequences. Defaults to "cpu".dtype(torch.dtype, optional): Data type of the sequences. Defaults to torch.float32
Return:
- Tuple[torch.Tensor, ...]: One-hot encoded sequences and log-weights if load_weights is True.
function save_chains
save_chains(
fname: str,
chains: Union[list, ndarray, Tensor],
tokens: str,
log_weights: Optional[Tensor, ndarray] = None
) → None
Saves the chains in a fasta file.
Args:
fname(str): Path to the file where to save the chains.chains(Union[list, np.ndarray, torch.Tensor]): Iterable with sequences in string, categorical or one-hot encoded format.tokens(str): "protein", "dna", "rna" or another string with the alphabet to be used.log_weights(Union[torch.Tensor, np.ndarray, None], optional): Log-weights of the chains. Defaults to None.
function load_params
load_params(
fname: str,
tokens: str,
device: device,
dtype: dtype = torch.float32
) → Dict[str, Tensor]
Import the parameters of the model from a text file.
Args:
fname(str): Path of the file that stores the parameters.tokens(str): "protein", "dna", "rna" or another string with a compatible alphabet to be used.device(torch.device): Device where to store the parameters.dtype(torch.dtype): Data type of the parameters. Defaults to torch.float32.
Returns:
Dict[str, torch.Tensor]: Parameters of the model. - "bias": Tensor of shape (L, q) - local biases. - "coupling_matrix": Tensor of shape (L, q, L, q) - coupling matrix.
function load_params_old
load_params_old(
fname: str,
tokens: str,
device: device,
dtype: dtype = torch.float32
) → Dict[str, Tensor]
Import the parameters of the model from a file.
Args:
fname(str): Path of the file that stores the parameters.tokens(str): "protein", "dna", "rna" or another string with a compatible alphabet to be used.device(torch.device): Device where to store the parameters.dtype(torch.dtype): Data type of the parameters. Defaults to torch.float32.
Returns:
Dict[str, torch.Tensor]: Parameters of the model. - "bias": Tensor of shape (L, q) - local biases. - "coupling_matrix": Tensor of shape (L, q, L, q) - coupling matrix.
function save_params
save_params(
fname: str,
params: Dict[str, Tensor],
tokens: str,
mask: Optional[Tensor] = None
) → None
Saves the parameters of the model in a file.
Args:
fname(str): Path to the file where to save the parameters.params(Dict[str, torch.Tensor]): Parameters of the model. - "bias": Tensor of shape (L, q) - local biases. - "coupling_matrix": Tensor of shape (L, q, L, q) - coupling matrix.tokens(str): "protein", "dna", "rna" or another string with a compatible alphabet to be used.mask(Optional[torch.Tensor]): Tensor of shape (L, q, L, q) - Mask of the coupling matrix that determines which are the non-zero entries. If None, the lower-triangular part of the coupling matrix is masked. Defaults to None.
function load_params_oldformat
load_params_oldformat(
fname: str,
device: device,
dtype: dtype = torch.float32
) → Dict[str, Tensor]
Import the parameters of the model from a file. Assumes the old DCA format.
Args:
fname(str): Path of the file that stores the parameters.device(torch.device): Device where to store the parameters.dtype(torch.dtype): Data type of the parameters. Defaults to torch.float32.
Returns:
Dict[str, torch.Tensor]: Parameters of the model. - "bias": Tensor of shape (L, q) - local biases. - "coupling_matrix": Tensor of shape (L, q, L, q) - coupling matrix.
function save_params_oldformat
save_params_oldformat(
fname: str,
params: Dict[str, Tensor],
mask: Optional[Tensor] = None
) → None
Saves the parameters of the model in a file. Assumes the old DCA format.
Args:
fname(str): Path to the file where to save the parameters.params(Dict[str, torch.Tensor]): Parameters of the model. - "bias": Tensor of shape (L, q) - local biases. - "coupling_matrix": Tensor of shape (L, q, L, q) - coupling matrix.mask(Optional[torch.Tensor]): Tensor of shape (L, q, L, q) - Mask of the coupling matrix that determines which are the non-zero entries. If None, the lower-triangular part of the coupling matrix is masked. Defaults to None.
This file was automatically generated via lazydocs.