module adabmDCA.plot
function plot_PCA
plot_PCA(
fig: Figure,
data1: ndarray,
pc1: int = 0,
pc2: int = 1,
data2: Optional[ndarray] = None,
labels: Union[List[str], str] = 'Data',
colors: Union[List[str], str] = 'black',
title: Optional[str] = None
) → Figure
Makes the scatter plot of the components (pc1, pc2) of the input data and shows the histograms of the components.
Args:
fig(Figure): Figure to plot the data.data1(np.ndarray): Data to plot.pc1(int, optional): First principal direction. Defaults to 0.pc2(int, optional): Second principal direction. Defaults to 1.data2(Optional[np.ndarray], optional): Data to be superimposed to data1. Defaults to None.labels(Union[List[str], str], optional): Labels to put in the legend. Defaults to "Data".colors(Union[List[str], str], optional): Colors to be used. Defaults to "black".title(Optional[str], optional): Title of the plot. Defaults to None.
Returns:
Figure: Updated figure.
function plot_pearson_sampling
plot_pearson_sampling(
ax: Axes,
checkpoints: ndarray,
pearsons: ndarray,
pearson_training: Optional[float] = None
) → Axes
Plots the Pearson correlation coefficient over sampling time.
Args:
ax(Axes): Axes to plot the data.checkpoints(np.ndarray): Checkpoints of the sampling.pearsons(np.ndarray): Pearson correlation coefficients at different checkpoints.pearson_training(Optional[float], optional): Pearson correlation coefficient obtained during training. Defaults to None.
Returns:
Axes: Updated axes.
function plot_autocorrelation
plot_autocorrelation(
ax: Axes,
checkpoints: ndarray,
autocorr: ndarray,
gen_seqid: float,
data_seqid: float
) → Axes
Plots the time-autocorrelation curve of the sequence identity and the generated and data sequence identities.
Args:
ax(Axes): Axes to plot the data.checkpoints(np.ndarray): Checkpoints of the sampling.autocorr(np.ndarray): Time-autocorrelation of the sequence identity.gen_seqid(float): Sequence identity of the generated data.data_seqid(float): Sequence identity of the data.
Returns:
Axes: Updated axes.
function plot_scatter_correlations
plot_scatter_correlations(
ax: Tuple[Axes, Axes],
Cij_data: ndarray,
Cij_gen: ndarray,
Cijk_data: ndarray,
Cijk_gen: ndarray,
pearson_Cij: float,
pearson_Cijk: float
) → Tuple[Axes, Axes]
Plots the scatter plot of the data and generated Cij and Cijk values.
Args:
ax(Tuple[Axes, Axes]): Tuple of 2 Axes to plot the data.Cij_data(np.ndarray): Data Cij values.Cij_gen(np.ndarray): Generated Cij values.Cijk_data(np.ndarray): Data Cijk values.Cijk_gen(np.ndarray): Generated Cijk values.pearson_Cij(float): Pearson correlation coefficient of Cij.pearson_Cijk(float): Pearson correlation coefficient of Cijk.
Returns:
Tuple[Axes, Axes]: Updated axes.
function plot_contact_map
plot_contact_map(ax: Axes, cm: ndarray, title: Optional[str] = None) → Axes
Plots the contact map.
Args:
ax(Axes): Axes to plot the contact map.cm(np.ndarray): Contact map to plot.title(Optional[str], optional): Title of the plot. Defaults to None.
Returns:
Axes: Updated axes.
This file was automatically generated via lazydocs.