module dca
function get_seqid
get_seqid(
s1: Tensor,
s2: Tensor | None = None,
average: bool = False
) → Union[Tensor, Tuple[Tensor, Tensor]]
When average is True: - If s2 is provided, computes the mean and the standard deviation of the mean sequence identity between two sets of one-hot encoded sequences. - If s2 is a single sequence (L, q), it computes the mean and the standard deviation of the mean sequence identity between the dataset s1 and s2. - If s2 is none, computes the mean and the standard deviation of the mean of the sequence identity between s1 and a permutation of s1.
When average is False it returns the array of sequence identities.
Args:
s1
(torch.Tensor): Sequence dataset 1.s2
(torch.Tensor | None): Sequence dataset 2. Defaults to None.average
(bool): Whether to return the average and standard deviation of the sequence identity or the array of sequence identities.
Returns:
torch.Tensor | Tuple[torch.Tensor, torch.Tensor]
: List of sequence identities or mean sequence identity and standard deviation of the mean.
function set_zerosum_gauge
set_zerosum_gauge(params: Dict[str, Tensor]) → Dict[str, Tensor]
Sets the zero-sum gauge on the coupling matrix.
Args:
params
(Dict[str, torch.Tensor]): Parameters of the model.
Returns:
Dict[str, torch.Tensor]
: Parameters with fixed gauge.
function get_contact_map
get_contact_map(params: Dict[str, Tensor], tokens: str) → ndarray
Computes the contact map from the model coupling matrix.
Args:
params
(Dict[str, torch.Tensor]): Model parameters.tokens
(str): Alphabet.
Returns:
np.ndarray
: Contact map.
function get_mf_contact_map
get_mf_contact_map(
data: Tensor,
tokens: str,
weights: Tensor | None = None
) → ndarray
Computes the contact map from the model coupling matrix.
Args:
data
(torch.Tensor): Input one-hot data tensor.tokens
(str): Alphabet.weights
(torch.Tensor | None): Weights for the data points. Defaults to None.
Returns:
np.ndarray
: Contact map.
This file was automatically generated via lazydocs.