module plot
function plot_PCA
plot_PCA(
fig: Figure,
data1: ndarray,
pc1: int = 0,
pc2: int = 1,
data2: ndarray | None = None,
labels: Union[List[str], str] = 'Data',
colors: Union[List[str], str] = 'black',
title: str | None = None
) → Figure
Makes the scatter plot of the components (pc1, pc2) of the input data and shows the histograms of the components.
Args:
fig
(plt.figure): Figure to plot the data.data1
(np.ndarray): Data to plot.pc1
(int, optional): First principal direction. Defaults to 0.pc2
(int, optional): Second principal direction. Defaults to 1.data2
(np.ndarray | None, optional): Data to be superimposed to data1. Defaults to None.labels
(List[str] | str, optional): Labels to put in the legend. Defaults to "Data".colors
(List[str] | str, optional): Colors to be used. Defaults to "black".title
(str | None, optional): Title of the plot. Defaults to None.
Returns:
Figure
: Updated figure.
function plot_pearson_sampling
plot_pearson_sampling(
ax: Axes,
checkpoints: ndarray,
pearsons: ndarray,
pearson_training: ndarray | None = None
)
Plots the Pearson correlation coefficient over sampling time.
Args:
ax
(Axes): Axes to plot the data.checkpoints
(np.ndarray): Checkpoints of the sampling.pearsons
(np.ndarray): Pearson correlation coefficients at different checkpoints.pearson_training
(np.ndarray | None, optional): Pearson correlation coefficient obtained during training. Defaults to None.
Returns:
Axes
: Updated axes.
function plot_autocorrelation
plot_autocorrelation(
ax: Axes,
checkpoints: ndarray,
autocorr: ndarray,
gen_seqid: float,
data_seqid: float
) → Axes
Plots the time-autocorrelation curve of the sequence identity and the generated and data sequence identities.
Args:
ax
(Axes): Axes to plot the data.checkpoints
(np.ndarray): Checkpoints of the sampling.autocorr
(np.ndarray): Time-autocorrelation of the sequence identity.gen_seqid
(float): Sequence identity of the generated data.data_seqid
(float): Sequence identity of the data.
Returns:
Axes
: Updated axes.
function plot_scatter_correlations
plot_scatter_correlations(
ax: Tuple[Axes, Axes],
Cij_data: ndarray,
Cij_gen: ndarray,
Cijk_data: ndarray,
Cijk_gen: ndarray,
pearson_Cij: float,
pearson_Cijk: float
) → Axes
Plots the scatter plot of the data and generated Cij and Cijk values.
Args:
ax
(Axes): Axes to plot the data. Must have 2 subplots.Cij_data
(np.ndarray): Data Cij values.Cij_gen
(np.ndarray): Generated Cij values.Cijk_data
(np.ndarray): Data Cijk values.Cijk_gen
(np.ndarray): Generated Cijk values.pearson_Cij
(float): Pearson correlation coefficient of Cij.pearson_Cijk
(float): Pearson correlation coefficient of Cijk.
Returns:
plt.Axes
: Updated axes.
function plot_contact_map
plot_contact_map(ax: Axes, cm: ndarray, title: str | None = None) → Axes
Plots the contact map.
Args:
ax
(Axes): Axes to plot the contact map.cm
(np.ndarray): Contact map to plot.title
(str | None, optional): Title of the plot. Defaults to None.
Returns:
Axes
: Updated axes.
This file was automatically generated via lazydocs.