Skip to content

Quicklist

โšก List of the main routines with standard arguments

  • ๐Ÿง  Train a bmDCA model with default arguments:
adabmDCA train -d <fasta_file> -o <output_folder>
  • ๐Ÿ” Resume training of a bmDCA model:
adabmDCA train -d <fasta_file> -o <output_folder> -p <file_params> -c <file_chains>
  • ๐ŸŒฑ Train an eaDCA model with default arguments:
adabmDCA train -m eaDCA -d <fasta_file> -o <output_folder> --nsweeps 5
  • ๐Ÿ”„ Resume training of an eaDCA model:
adabmDCA train -m eaDCA -d <fasta_file> -o <output_folder> -p <file_params> -c <file_chains>
  • โœ‚๏ธ Decimate a bmDCA model to 2% density:
adabmDCA train -m edDCA -d <fasta_file> -p <file_params> -c <file_chains>
  • ๐Ÿ”€ Train and decimate a bmDCA model to 2% density:
adabmDCA train -m edDCA -d <fasta_file>
  • ๐Ÿงฌ Generate sequences from a trained model:
adabmDCA sample -p <file_params> -d <fasta_file> -o <output_folder> --ngen <num_gen>
  • ๐Ÿ“‰ Score a sequence set:
adabmDCA energies -d <fasta_file> -p <file_params> -o <output_folder>
  • ๐Ÿงช Generate a single mutant library from a wild type:
adabmDCA DMS -d <WT> -p <file_params> -o <output_folder>
  • ๐Ÿ”— Compute contact scores via Frobenius norm:
adabmDCA contacts -p <file_params> -o <output_folder>
  • ๐Ÿ” Reintegrate DCA model from experiments:
adabmDCA reintegrate -d <nat_msa> -o <output_folder> --reint <reint_msa> --adj <adj_vector> --alphabet <protein/rna>
  • ๐Ÿง  Train/test split for homologous sequences:
adabmDCA profmark -t1 <t1> -t2 <t2> --bestof <n_trials> <output_prefix> <input_msa>