Quicklist
Train a bmDCA model with default arguments:
$ ./adabmDCA.sh train -d <fasta_file> -o <output_folder>
Restore the training of a bmDCA model:
$ ./adabmDCA.sh train -d <fasta_file> -o <output_folder> -p <file_params> -c <file_chains>
Train an eaDCA model with default arguments:
$ ./adabmDCA.sh train -m eaDCA -d <fasta_file> -o <output_folder> --nsweeps 5
Restore the training of an eaDCA model:
$ ./adabmDCA.sh train -m eaDCA -d <fasta_file> -o <output_folder> -p <file_params> -c <file_chains>
Decimate a bmDCA model at 2% of density:
./adabmDCA.sh train -m edDCA -d <fasta_file> -p <file_params> -c <file_chains>
Train and decimate a bmDCA model at 2% of density:
$ ./adabmDCA.sh train -m edDCA -d <fasta_file>
Sample from a previously trained DCA model:
$ ./adabmDCA.sh sample -p <file_params> -d <fasta_file> -o <output_folder> --ngen <num_gen>
Scoring a sequence set:
$ ./adabmDCA.sh energies -d <fasta_file> -p <file_params> -o <output_folder>
Generating a single mutant library starting from a wild type:
$ ./adabmDCA.sh DMS -d <WT> -p <file_params> -o <output_folder>
Computing the matrix of Frobenius norms for the contact prediction:
$ ./adabmDCA.sh contacts -p <file_params> -o <output_folder>